An Improved Pedestrian Ttracking Method Based on Wi-Fi Fingerprinting and Pedestrian Dead Reckoning

Author:

Feng Bo,Tang Wei,Guo Guofa,Jia Xiaohong

Abstract

Wi-Fi based positioning has great potential for use in indoor environments because Wi-Fi signals are near-ubiquitous in many indoor environments. With a Reference Fingerprint Map (RFM), fingerprint matching can be adopted for positioning. Much assisting information can be adopted for increasing the accuracy of Wi-Fi based positioning. One of the most adopted pieces of assisting information is the Pedestrian Dead Reckoning (PDR) information derived from inertial measurements. This is widely adopted because the inertial measurements can be acquired through a Commercial Off The Shelf (COTS) smartphone. To integrate the information of Wi-Fi fingerprinting and PDR information, many methods have adopted filters, such as Kalman filters and particle filters. A new methodology for integration of Wi-Fi fingerprinting and PDR is proposed using graph optimization in this paper. For the Wi-Fi based fingerprinting part, our method adopts the state-of-art hierarchical structure and the Penalized Logarithmic Gaussian Distance (PLGD) metric. In the integration part, a simple extended Kalman filter (EKF) is first used for integration of Wi-Fi fingerprinting and PDR results. Then, the tracking results are adopted as initial values for the optimization block, where Wi-Fi fingerprinting and PDR results are adopted to form an concentrated cost function (CCF). The CCF can be minimized with the aim of finding the optimal poses of the user with better tracking results. With both real-scenario experiments and simulations, we show that the proposed method performs better than classical Kalman filter based and particle filter based methods with both less average and maximum positioning error. Additionally, the proposed method is more robust to outliers in both Wi-Fi based and PDR based results, which is commonly seen in practical situations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3