Affiliation:
1. State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
2. Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
Abstract
Ginkgo biloba is one of the most widely cultivated dioecious timber trees in China. Understanding sex-related differences and how they affect growth traits and wood properties is crucial for informed management and optimal utilization of ginkgoes. In the present study, we collected 42 ginkgo samples and conducted DNA molecular identification to determine their sex. The result was a 1:1 ratio of male to female specimens. In addition, we measured 16 growth-trait and wood-property indices for these samples using advanced equipment, such as X-ray diffraction (XRD) and the Hitman ST300 standing tree tool. For growth traits, significant differences were observed between male and female ginkgoes in terms of the diameter at breast height (DBH), clear bole height (CBH), height, and volume. Significant differences were identified in wood properties between male and female ginkgoes in terms of the degree of cellulose crystallinity (DCC), cell length, cell wall thickness, and wall-to-lumen ratio. Tracheids from female trees were found to be wider, with thicker cell walls, than those from male trees. Principal component analysis (PCA) showed that there was a slight separation between the sexes in terms of all growth traits, whereas there was no separation in wood properties. The membership function value (MFV) also showed that male ginkgo exhibited a more robust phenotype than female ginkgo. The selection of male ginkgo for breeding and utilization offers distinct advantages for practical production.
Funder
Jiangsu Provincial Key Research and Development Program
Natural Science Foundation of Jiangsu Province
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献