Integration and Detection of a Moving Target with Multiple Beams Based on Multi-Scale Sliding Windowed Phase Difference and Spatial Projection

Author:

Hu Rensu1,Li Dong1,Wan Jun1,Kang Xiaohua1,Liu Qinghua2,Chen Zhanye1ORCID,Yang Xiaopeng3

Affiliation:

1. School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China

2. Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, Guilin 541004, China

3. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

Abstract

Due to the fast scanning speed of the current phased-array radar and the moving characteristics of the target, the moving target usually spans multiple beams during coherent integration time, which results in severe performance loss for target focusing and parameter estimation because of the unknown entry/departure beam time within the coherent period. To solve this issue, a novel focusing and detection method based on the multi-beam phase compensation function (MBPCF), multi-scale sliding windowed phase difference (MSWPD), and spatial projection are proposed in this paper. The proposed method mainly includes the following three steps. First, the geometric and signal models of multiple beam integration with observed moving targets are accurately established where the range migration (RM), Doppler frequency migration (DFM), and beam migration (BM) are analyzed. Based on that, the BM is eliminated by the MBPCF, the second-order keystone transform (SOKT) is utilized to mitigate the RM, and then, a new MSWPD operation is developed to estimate the target’s entry/departure beam time, which realizes well-focusing output within the beam. After that, by dividing the radar detection area, the spatial projection (SP) method is adopted to obtain multiple-beams joint integration, and thus, improved detection performance can be obtained. Numerical experiments are carried out to evaluate the performance of the proposed method. The results show that the proposed method could achieve superior focusing and detection performances.

Funder

National Natural Science Foundation of China

Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education

Basic scientific research project

the Opening Project of the Guangxi Wireless Broadband Communication and Signal Processing Key Laboratory

the Engineering Research Center of Mobile Communications, Ministry of Education

the Natural Science Foundation of Chongqing, China

Fundamental Research Funds for the Central Universities Project

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3