High-Resolution Network with Transformer Embedding Parallel Detection for Small Object Detection in Optical Remote Sensing Images

Author:

Zhang Xiaowen12ORCID,Liu Qiaoyuan1ORCID,Chang Hongliang12,Sun Haijiang1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Small object detection in remote sensing enables the identification and analysis of unapparent but important information, playing a crucial role in various ground monitoring tasks. Due to the small size, the available feature information contained in small objects is very limited, making them more easily buried by the complex background. As one of the research hotspots in remote sensing, although many breakthroughs have been made, there still exist two significant shortcomings for the existing approaches: first, the down-sampling operation commonly used for feature extraction can barely preserve weak features of objects in a tiny size; second, the convolutional neural network methods have limitations in modeling global context to address cluttered backgrounds. To tackle these issues, a high-resolution network with transformer embedding parallel detection (HRTP-Net) is proposed in this paper. A high-resolution feature fusion network (HR-FFN) is designed to solve the first problem by maintaining high spatial resolution features with enhanced semantic information. Furthermore, a Swin-transformer-based mixed attention module (STMA) is proposed to augment the object information in the transformer block by establishing a pixel-level correlation, thereby enabling global background–object modeling, which can address the second shortcoming. Finally, a parallel detection structure for remote sensing is constructed by integrating the attentional outputs of STMA with standard convolutional features. The proposed method effectively mitigates the impact of the intricate background on small objects. The comprehensive experiment results on three representative remote sensing datasets with small objects (MASATI, VEDAI and DOTA datasets) demonstrate that the proposed HRTP-Net achieves a promising and competitive performance.

Funder

2023 Jilin Province and Chinese Academy of Sciences cooperative high-tech industrialization project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3