Estimation of Total Phosphorus Concentration in Lakes in the Yangtze-Huaihe Region Based on Sentinel-3/OLCI Images

Author:

Wang Xiaoyang123,Jiang Youyi1,Jiang Mingliang2ORCID,Cao Zhigang2ORCID,Li Xiao1,Ma Ronghua245ORCID,Xu Ligang2ORCID,Xiong Junfeng23

Affiliation:

1. College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China

2. Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China

3. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China

4. University of Chinese Academy of Sciences, Nanjing 211135, China

5. Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian 223001, China

Abstract

Total phosphorus (TP) concentration is a crucial parameter to assess eutrophication in lakes. As one of the most concentrated regions for freshwater lakes, the Yangtze-Huaihe region plays a significant role in monitoring TP concentrations for the sustainable utilisation of China’s water resources. In this study, a TP concentration estimation model suitable for large-sized lake groups was developed using a combination of measured and remote sensing data powered by advanced machine learning algorithms. Compared to traditional empirical models, the model developed in this study demonstrates significant accuracy in fitting (R2 = 0.53, RMSE = 0.08 mg/L, MAPE = 34.20%). Moreover, the application of this model to lakes in the Yangtze-Huaihe region from 2017 to 2022 has been conducted. The multi-year average TP concentration was 0.18 mg/L. Spatial distribution analyses showed that total phosphorus concentrations were higher in small lakes. In terms of temporal changes, the interannual decreases in total phosphorus concentrations were 0.02 mg/L, 0.01 mg/L, and 0.01 mg/L for small, medium, and large lakes, respectively. We also found that large lakes typically exhibited a “high in spring and summer, low in autumn and winter” pattern until 2020, but transitioned to a “high in summer and autumn, low in spring and winter” pattern after 2020 due to the removal of closed fish nets, which were having a significant impact on the lake ecosystem. Other lakes in the area consistently showed a pattern of “high in spring and summer, low in autumn and winter” during the six-year period. These findings may provide useful references and suggestions for the environmental protection and management of lakes in China.

Funder

Natural Science Foundation of Jiangsu Province for Youths

National Natural Science Foundation of China

Key Laboratory of Land Satellite Remote Sensing Application, Ministry of Natural Resources of the People’s Republic of China

National Key R&D Program of China

Lake-Watershed Science Data Center

National Earth System Science Data Center

National Science & Technology Infrastructure of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3