A Design Scenario Approach for Choosing Protection Works against Rockfall Phenomena

Author:

Taboni Battista1ORCID,Umili Gessica1ORCID,Ferrero Anna Maria1ORCID

Affiliation:

1. Department of Earth Sciences, University of Turin, Via Valperga Caluso 35, 10125 Turin, Italy

Abstract

Proximity remote sensing techniques, both land- and drone-based, allow for a significant improvement of the quality and quantity of raw data employed in the analysis of rockfall phenomena. In particular, the large amount of data these techniques can provide allows for the use of probabilistic approaches to rock mass characterization, with particular reference to block volume and shape definition. These, in return, are key parameters required for a proper rockfall hazard assessment and the optimization of countermeasures design. This study aims at providing a sort of guide, starting from the data gathering phase to the processing, up to the implementation of the outputs in a probabilistic-based scenario, which is able to associate a probability of not being exceeded with total kinetic energy values. By doing so, we were able to introduce a new approach for the choice of design parameters and the evaluation of the effectiveness of mitigation techniques. For this purpose, a suitable case study located in Varaita Valley (Cuneo, Italy) has been selected. The area has been surveyed, and a model of the slope and a digital model of the rock faces have been defined. The results show that a 6.5 m3 block has a probability of not being exceeded of 75%; subsequent simulations show that the level of kinetic energy involved in such a rockfall is extremely high. Some mitigation techniques are discussed.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3