A Multi-Channel Attention Network for SAR Interferograms Filtering Applied to TomoSAR

Author:

Li Jie123ORCID,Li Zhiyuan123,Zhang Bingchen123,Wu Yirong13

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, Chinese Academy of Sciences, Beijing 100190, China

3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China

Abstract

Tomographic synthetic aperture radar (TomoSAR) is an advanced synthetic aperture radar (SAR) interferometric technique that can retrieve 3-D spatial information. However, the performances of 3-D reconstruction could be degraded due to the noise in interferograms, which makes the filtering crucial before the tomographic reconstruction. As known, filters for single-channel interferograms are common, but those for multi-channel interferograms are still rare. In this paper, we propose a multi-channel attention network to denoise the multi-channel interferograms applied for TomoSAR, which is built on the basis of multi-channel attention blocks. An important feature of the block is the local context mixing before the computation of attention maps across channels, which explores the intra-channel local information and the inter-channel relationship of the multi-channel interferograms. Based on this architecture, the proposed method can effectively filter the noise while preserving the structures in interferograms, thus improving the performance of tomographic reconstruction. The network is trained by simulated data and the promising results of both simulated and real data validate the effectiveness of our proposed method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3