Estimating and Mapping Soil Salinity in Multiple Vegetation Cover Periods by Using Unmanned Aerial Vehicle Remote Sensing

Author:

Cui Xin12ORCID,Han Wenting12,Dong Yuxin12,Zhai Xuedong12,Ma Weitong23,Zhang Liyuan4,Huang Shenjin5

Affiliation:

1. College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China

2. Institute of Water-Saving Agriculture in Arid Areas of China, Northwest A&F University, Xianyang 712100, China

3. College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China

4. Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment, Jiangsu University, Zhenjiang 212013, China

5. Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China

Abstract

Soil salinization is a severe soil degradation issue in arid and semiarid regions. The distribution of soil salinization can prove useful in mitigating soil degradation. Remote sensing monitoring technology is available for obtaining the distribution of soil salinization rapidly and nondestructively. In this study, experimental data were collected from seven study areas of the Hetao Irrigation District from July to August in 2021 and 2022. The soil salt content (SSC) was considered at various soil depths, and the crop type and time series were considered as environmental factors. We analyzed the effects of various environmental factors on the sensitivity response of unmanned aerial vehicle (UAV)-derived spectral index variables to the SSC and assessed the accuracy of SSC estimations. The five indices with the highest correlation with the SSC under various environmental factors were the input parameters used in modeling based on three machine learning algorithms. The best model was subsequently used to derive prediction distribution maps of the SSC. The results revealed that the crop type and time series did not affect the relationship strength between the SSC and spectral indices, and that the classification of the crop type and time series can considerably enhance the accuracy of SSC estimation. The mask treatment of the soil pixels can improve the correlation between some spectral indices and the SSC. The accuracies of the ANN and RFR models were higher than SVR accuracy (optimal R2 = 0.52–0.79), and the generalization ability of ANN was superior to that of RFR. In this study, considering environmental factors, a UAV remote sensing estimation and mapping method was proposed. The results of this study provide a reference for the high-precision prediction of soil salinization during the vegetation cover period.

Funder

National Natural Science Foundation of China

Shaanxi Province Key Research and Development Projects

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3