Enhancing Monitoring Performance: A Microservices Approach to Monitoring with Spyware Techniques and Prediction Models

Author:

Rossetto Anubis Graciela de Moraes1ORCID,Noetzold Darlan1ORCID,Silva Luis Augusto2ORCID,Leithardt Valderi Reis Quietinho34ORCID

Affiliation:

1. Federal Institute of Education, Science and Technology Sul-Rio-Grandense, Passo Fundo 99.064-440, RS, Brazil

2. Department of Computer Science and Automation, University of Salamanca, 37008 Salamanca, Spain

3. Lisbon School of Engineering (ISEL), Polytechnic University of Lisbon (IPL), 1549-020 Lisbon, Portugal

4. Center of Technology and Systems (UNINOVA-CTS) and Associated Lab of Intelligent Systems (LASI), 2829-516 Caparica, Portugal

Abstract

In today’s digital landscape, organizations face significant challenges, including sensitive data leaks and the proliferation of hate speech, both of which can lead to severe consequences such as financial losses, reputational damage, and psychological impacts on employees. This work considers a comprehensive solution using a microservices architecture to monitor computer usage within organizations effectively. The approach incorporates spyware techniques to capture data from employee computers and a web application for alert management. The system detects data leaks, suspicious behaviors, and hate speech through efficient data capture and predictive modeling. Therefore, this paper presents a comparative performance analysis between Spring Boot and Quarkus, focusing on objective metrics and quantitative statistics. By utilizing recognized tools and benchmarks in the computer science community, the study provides an in-depth understanding of the performance differences between these two platforms. The implementation of Quarkus over Spring Boot demonstrated substantial improvements: memory usage was reduced by up to 80% and CPU usage by 95%, and system uptime decreased by 119%. This solution offers a robust framework for enhancing organizational security and mitigating potential threats through proactive monitoring and predictive analysis while also guiding developers and software architects in making informed technological choices.

Funder

Center of Technology and Systems

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3