Drought and Pathogen Effects on Survival, Leaf Physiology, Oxidative Damage, and Defense in Two Middle Eastern Oak Species

Author:

Ghanbary EhsanORCID,Fathizadeh OmidORCID,Pazhouhan Iman,Zarafshar Mehrdad,Tabari Masoud,Jafarnia Shahram,Parad Ghasem Ali,Bader Martin Karl-FriedrichORCID

Abstract

The charcoal disease agents, Biscogniauxia mediterranea and Obolarina persica are two latent, ascomycetous oak pathogens in the Middle Eastern Zagros forests, where they have devastating effects, particularly during drought. Under greenhouse conditions, we investigated the effects of the two charcoal disease agents individually and in combination with drought on survival, growth, foliar gas-exchange, pigment content, oxidative stress and the antioxidant response of Quercus infectoria and Q. libani, two of the dominant tree species in this region. Commonly, the strongest negative effects emerged in the drought–pathogen interaction treatments. Q. infectoria showed less severe lesions, higher survival, more growth, and less leaf loss than Q. libani under combined biotic and abiotic stress. In both oak species, the combination of pathogen infection and drought resulted in more than 50% reduction in foliar gas-exchange parameters with partial recovery over time in Q. infectoria suggesting a superior defense system. Indeed, enhanced foliar anthocyanin, total soluble protein and glutathione concentrations imply an upregulation of the antioxidant defense system in Q. infectoria under stress while none of these parameters showed a significant treatment response in Q. libani. Consequently, Q. infectoria foliage showed no significant increase in superoxide, lower lipoxygenase activity, and less electrolyte leakage compared to the highly elevated levels seen in Q. libani indicating oxidative damage. Our findings indicate greater drought tolerance and pathogen resilience in Q. infectoria compared to Q. libani. Under future climate scenarios, we therefore expect changes in forest community structure driven by a decline in Q. libani and closely associated organisms.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3