Abstract
Modifications to the traditional Onsager theory for modeling isotropic–nematic phase transitions in hard prolate spheroidal systems are presented. Pure component systems are used to identify the need to update the Lee–Parsons resummation term. The Lee–Parsons resummation term uses the Carnahan–Starling equation of state to approximate higher-order virial coefficients beyond the second virial coefficient employed in Onsager’s original theoretical approach. As more exact ways of calculating the excluded volume of two hard prolate spheroids of a given orientation are used, the division of the excluded volume by eight, which is an empirical correction used in the original Lee–Parsons resummation term, must be replaced by six to yield a better match between the theoretical and simulation results. These modifications are also extended to binary mixtures of hard prolate spheroids using the Boublík–Mansoori–Carnahan–Starling–Leland (BMCSL) equation of state.
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献