Effective Diffusion in Fibrous Porous Media: A Comparison Study between Lattice Boltzmann and Pore Network Modeling Methods

Author:

Huang Xiang,Zhou Wei,Deng Daxiang

Abstract

The understanding of the correlation between a pore-scale structure and its coupled diffusion transport property is crucial in the virtual design and performance optimization of porous fibrous material for various energy applications. Two most common and widely employed pore-scale modeling techniques are the lattice Boltzmann method (LBM) and the pore network modeling (PNM). However, little attention has been paid to the direct comparison between these two methods. To this end, stochastic porous fibrous structures are reconstructed reflecting the structural properties of the fibrous porous material on a statistical level with structural properties obtained from X-ray computed microtomography. Diffusion simulation through the porous phase was subsequently conducted using LBM of D3Q7 lattice and topological equivalent PNM derived from the watershed method, respectively. It is detected that the effective diffusion coefficients between these two methods are in good agreement when the throat radius in the pore network is estimated using the cross-section area equivalent radius. Like most literature, the diffusivity in the in-plane (IP) direction is larger than in the through-plane (TP) direction due to the laid fiber arrangement, but the values are very close. Besides, tortuosity was evaluated from both geometry and transport measurements. Tortuosity values deduced from both methods are in line with the anisotropy of the diffusion coefficients.

Funder

the Nature Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3