Optimization of Mechanical Properties and Damage Tolerance in Polymer-Mineral Multilayer Composites

Author:

Wiener Johannes,Kaineder Hannes,Kolednik Otmar,Arbeiter FlorianORCID

Abstract

Talcum reinforced polypropylene was enhanced with a soft type of polypropylene in order to increase the impact strength and damage tolerance of the material. The soft phase was incorporated in the form of continuous interlayers, where the numbers of layers ranged from 64 to 2048. A blend with the same material composition (based on wt% of the used materials) and the pure matrix material were investigated for comparison. A plateau in impact strength was reached by layered architectures, where the matrix layer thickness was as small or smaller than the largest talcum particles. The most promising layered architecture, namely, 512 layers, was subsequently investigated more thoroughly using instrumented Charpy experiments and tensile testing. In these tests, normalised parameters for stiffness and strength were obtained in addition to the impact strength. The multilayered material showed remarkable impact strength, fracture energy and damage tolerance. However, stiffness and strength were reduced due to the addition of the soft phase. It could be shown that specimens under bending loads are very compliant due to a stress-decoupling effect between layers that specifically reduces bending stiffness. This drawback could be avoided under tensile loading, while the increase in toughness remained high.

Funder

Österreichische Forschungsförderungsgesellschaft

Publisher

MDPI AG

Subject

General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3