Modelling Causal Factors of Unintentional Electromagnetic Emanations Compromising Information Technology Equipment Security

Author:

Martin Maxwell,Sunmola Funlade,Lauder David

Abstract

Information technology equipment (ITE) processing sensitive information can have its security compromised by unintentional electromagnetic radiation. Appropriately assessing likelihood of a potential compromise relies on radio frequency (RF) engineering expertise—specifically, requiring knowledge of the associated causal factors and their interrelationships. Several factors that can cause unintentional electromagnetic emanations that can lead to the compromise of ITE have been found in the literature. This paper confirms the list of causal factors reported in previous work, categorizes the factors as belonging to threat, vulnerability, or impact, and develops an interpretive structural model of the vulnerability factors. A participatory modelling approach was used consisting of focus groups of RF engineers. The resulting hierarchical structural model shows the relationships between factors and illustrates their relative significance. The paper concludes that the resulting model can motivate a deeper understanding of the structural relationship of the factors that can be incorporated in the RF engineers’ assessment process. Areas of future work are suggested.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference29 articles.

1. Electromagnetic Compatibility http://www.bsigroup.com/en-GB/industries-and-sectors/electrical-and-electronic/electromagnetic-compatibility/

2. Wayback Machine

3. Electromagnetic radiation from video display units: An eavesdropping risk?

4. Electromagnetic Eavesdropping Risks of Flat-Panel Displays

5. Compromising Electromagnetic Emanations of Wired and Wireless Keyboards;Vuagnoux;Proceedings of the 18th USENIX Security Symposium,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3