Direct Mercury Detection in Landfill Leachate Using a Novel AuNP-Biopolymer Carbon Screen-Printed Electrode Sensor

Author:

Hwang Jae-HoonORCID,Fox David,Stanberry Jordan,Anagnostopoulos VasileiosORCID,Zhai LeiORCID,Lee Woo HyoungORCID

Abstract

A novel Au nanoparticle (AuNP)-biopolymer coated carbon screen-printed electrode (SPE) sensor was developed through the co-electrodeposition of Au and chitosan for mercury (Hg) ion detection. This new sensor showed successful Hg2+ detection in landfill leachate using square wave anodic stripping voltammetry (SWASV) with an optimized condition: a deposition potential of −0.6 V, deposition time of 200 s, amplitude of 25 mV, frequency of 60 Hz, and square wave step voltage of 4 mV. A noticeable peak was observed at +0.58 V associated with the stripping current of the Hg ion. The sensor exhibited a good sensitivity of ~0.09 μA/μg (~0.02 μA/nM) and a linear response over the concentration range of 10 to 100 ppb (50–500 nM). The limit of detection (LOD) was 1.69 ppb, which is significantly lower than the safety limit defined by the United States Environmental Protection Agency (USEPA). The sensor had an excellent selective response to Hg2+ in landfill leachate against other interfering cations (e.g., Zn2+, Pb2+, Cd2+, and Cu2+). Fifteen successive measurements with a stable peak current and a lower relative standard deviation (RSD = 5.1%) were recorded continuously using the AuNP-biopolymer-coated carbon SPE sensor, which showed excellent stability, sensitivity and reproducibility and consistent performance in detecting the Hg2+ ion. It also exhibited a good reliability and performance in measuring heavy metals in landfill leachate.

Funder

U.S. Department of Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3