Toward Development of a Label-Free Detection Technique for Microfluidic Fluorometric Peptide-Based Biosensor Systems

Author:

Sitkov NikitaORCID,Zimina Tatiana,Kolobov Alexander,Karasev Vladimir,Romanov Alexander,Luchinin Viktor,Kaplun DmitryORCID

Abstract

The problems of chronic or noncommunicable diseases (NCD) that now kill around 40 million people each year require multiparametric combinatorial diagnostics for the selection of effective treatment tactics. This could be implemented using the biosensor principle based on peptide aptamers for spatial recognition of corresponding protein markers of diseases in biological fluids. In this paper, a low-cost label-free principle of biomarker detection using a biosensor system based on fluorometric registration of the target proteins bound to peptide aptamers was investigated. The main detection principle considered includes the re-emission of the natural fluorescence of selectively bound protein markers into a longer-wavelength radiation easily detectable by common charge-coupled devices (CCD) using a specific luminophore. Implementation of this type of detection system demands the reduction of all types of stray light and background fluorescence of construction materials and aptamers. The latter was achieved by careful selection of materials and design of peptide aptamers with substituted aromatic amino acid residues and considering troponin T, troponin I, and bovine serum albumin as an example. The peptide aptamers for troponin T were designed in silico using the «Protein 3D» (SPB ETU, St. Petersburg, Russia) software. The luminophore was selected from the line of ZnS-based solid-state compounds. The test microfluidic system was arranged as a flow through a massive of four working chambers for immobilization of peptide aptamers, coupled with the optical detection system, based on thick film technology. The planar optical setup of the biosensor registration system was arranged as an excitation-emission cascade including 280 nm ultraviolet (UV) light-emitting diode (LED), polypropylene (PP) UV transparent film, proteins layer, glass filter, luminophore layer, and CCD sensor. A laboratory sample has been created.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Glass capillary systems for micro-volume fluorometry;Measurement;2025-01

2. Design of a Lab built Fully Automated Microfluidic Fluorometric System for Fluorescent Dye Applications;Pakistan Journal of Analytical & Environmental Chemistry;2024-06-28

3. Study of Miniature Planar Traps for Sample Preparation in Fluorimetric Microfluidic Biosensors;2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon);2024-01-29

4. Study of Multiparametric Biochip for Express Fluorometric Detection of Troponin T and Lactoferrin;2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon);2024-01-29

5. Development of Microfluidic Chips for Impedance Studies of Tumor Cells;2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon);2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3