Synthesis, Characterization, and Applications of Silver Nano Fibers in Humidity, Ammonia, and Temperature Sensing

Author:

Rashid Haroon-UrORCID,Ali Muhammad,Sarker Mahidur R.,Md Ali Sawal HamidORCID,Akhtar NaseemORCID,Khan Nadir Ali,Asif Muhammad,Shah Sahar

Abstract

The promising chemical, mechanical, and electrical properties of silver from nano scale to bulk level make it useful to be used in a variety of applications in the biomedical and electronic fields. Recently, several methods have been proposed and applied for the small-scale and mass production of silver in the form of nanoparticles, nanowires, and nanofibers. In this research, we have proposed a novel method for the fabrication of silver nano fibers (AgNFs) that is environmentally friendly and can be easily deployed for large-scale production. Moreover, the proposed technique is easy for device fabrication in different applications. To validate the properties, the synthesized silver nanofibers have been examined through Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Further, the synthesized silver nanofibers have been deposited over sensors for Relative humidity (RH), Ammonia (NH3), and temperature sensing applications. The sensor was of a resistive type, and found 4.3 kΩ for relative humidity (RH %) 30–90%, 400 kΩ for NH3 (40,000 ppm), and 5 MΩ for temperature sensing (69 °C). The durability and speed of the sensor verified through repetitive, response, and recovery tests of the sensor in a humidity and gas chamber. It was observed that the sensor took 13 s to respond, 27 s to measure the maximum value, and took 33 s to regain its minimum value. Furthermore, it was observed that at lower frequencies and higher concentration of NH3, the response of the device was excellent. Furthermore, the device has linear and repetitive responses, is cost-effective, and is easy to fabricate.

Funder

Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference42 articles.

1. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

2. Essentials in NanoScience and Nanotechnology;Kumar,2016

3. Norsuzila Ya’acob, Mardina Abdullahand Mahamod Ismail1etal;Intech,1989

4. STEM imaging to characterize nanoparticle emissions and help to design nanosafer paints

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3