Abstract
The goal of the present study was to copolymerize 3-(4-acetylphenylcarbamoyl) acrylic acid and styrene using azo-bis-isobutyronitrile (AIBN) as a catalyst. The resulting copolymers exhibited number average molecular weights (Mn) of 3.73–5.23 × 104 g/mol with a variable polydispersity (PDI = 2.3–3.8). The amide group of the PMA/PSA polymer was used for grafting poly (-styrene-maleic acid substituted aromatic 2-aminopyridine) by the Hantzsch reaction using a substituted aromatic aldehyde, malononitrile, and ammonium acetate. The polymer can emit strong blue fluorescence (λ = 510 nm) and its thermal stability and solubility were enhanced by polymer grafting. Moreover, the polymer showed the fluorescence spectra of the copolymer had a strong, broad emission band between 300 to 550 nm (maximum wavelength 538 nm) under excitation at 293 nm. The Hantzsch reaction yields an interesting class of nitrogen-based heterocycles that combine with a synthetic strategy for synthesis of grafted co-polymer pyridine-styrene derivatives. The as-prepared pyridine-based polymer compounds were screened against Gram-positive and Gram-negative bacteria, where a maximum inhibition zone toward all four types of bacteria was observed, including specific antifungal activity. Herein, a series of pyridine compounds were synthesized that showed enhanced fluorescent properties and antimicrobial properties due to their unique structure and ability to form polymer assemblies.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献