Synthesis and Characterization of Pyridine-Grafted Copolymers of Acrylic Acid–Styrene Derivatives for Antimicrobial and Fluorescence Applications

Author:

Durairaju Periyan,Umarani Chinnasamy,Rajabather Jothi RamalingamORCID,Alanazi Amer M.,Periyasami GovindasamiORCID,Wilson Lee D.ORCID

Abstract

The goal of the present study was to copolymerize 3-(4-acetylphenylcarbamoyl) acrylic acid and styrene using azo-bis-isobutyronitrile (AIBN) as a catalyst. The resulting copolymers exhibited number average molecular weights (Mn) of 3.73–5.23 × 104 g/mol with a variable polydispersity (PDI = 2.3–3.8). The amide group of the PMA/PSA polymer was used for grafting poly (-styrene-maleic acid substituted aromatic 2-aminopyridine) by the Hantzsch reaction using a substituted aromatic aldehyde, malononitrile, and ammonium acetate. The polymer can emit strong blue fluorescence (λ = 510 nm) and its thermal stability and solubility were enhanced by polymer grafting. Moreover, the polymer showed the fluorescence spectra of the copolymer had a strong, broad emission band between 300 to 550 nm (maximum wavelength 538 nm) under excitation at 293 nm. The Hantzsch reaction yields an interesting class of nitrogen-based heterocycles that combine with a synthetic strategy for synthesis of grafted co-polymer pyridine-styrene derivatives. The as-prepared pyridine-based polymer compounds were screened against Gram-positive and Gram-negative bacteria, where a maximum inhibition zone toward all four types of bacteria was observed, including specific antifungal activity. Herein, a series of pyridine compounds were synthesized that showed enhanced fluorescent properties and antimicrobial properties due to their unique structure and ability to form polymer assemblies.

Funder

King Saud University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3