Diagnosis of Bone Mineral Density Based on Backscattering Resonance Phenomenon Using Coregistered Functional Laser Photoacoustic and Ultrasonic Probes

Author:

Yang Lifeng,Chen ChulinORCID,Zhang Zhaojiang,Wei Xin

Abstract

Dual-energy X-ray absorptiometry (DXA) machines based on bone mineral density (BMD) represent the gold standard for osteoporosis diagnosis and assessment of fracture risk, but bone strength and toughness are strongly correlated with bone collagen content (CC). Early detection of osteoporosis combined with BMD and CC will provide improved predictability for avoiding fracture risk. The backscattering resonance (BR) phenomenon is present in both ultrasound (US) and photoacoustic (PA) signal transmissions through bone, and the peak frequencies of BR can be changed with BM and CC. This phenomenon can be explained by the formation of standing waves within the pores. Simulations were then conducted for the same bone µCT images and the resulting resonance frequencies were found to match those predicted using the standing wave hypothesis. Experiments were performed on the same bone sample using an 808 nm wavelength laser as the PA source and 3.5 MHz ultrasonic transducer as the US source. The backscattering resonance effect was observed in the transmitted waves. These results verify our hypothesis that the backscattering resonance phenomenon is present in both US and PA signal transmissions and can be explained using the standing waves model, which will provide a suitable method for the early detection of osteoporosis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3