Leaf Plasticity of the Subtropical Evergreen Tree Phoebe bournei Increases with Ontogeny in Response to Sun and Shade

Author:

Li Xin-Bei1,Liu Cheng-Cheng1,Chen Jia-Xin1,Zhang Meng-Meng1,Zhang Jun-Hong1ORCID,Tong Zai-Kang1,Yang Qi1ORCID

Affiliation:

1. State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China

Abstract

Variation in shade tolerance is a primary mechanism driving succession in subtropical forests. However, little attention has been given to ontogenetic variation in light tolerance of late succession tree species such as Phoebe bournei. To investigate the differences in adaptive strategies between seedlings and saplings in response to sun and shade, we systematically studied the physiological and morphological leaf plasticity of P. bournei and how these variables are influenced by ontogeny. This study provided experimental evidence that leaf plasticity increases with the ontogeny of juvenile P. bournei adapting to the changing light resources. Investment in leaf construction increased with age and light resources in the evergreen P. bournei, as shown by leaf mass per unit area (LMA). Six-month-old seedlings lacked the adjustment of stomatal conductance (gs) and stomatal density responding to sun and shade. For seedlings, maintaining high gs under sun conditions increased stress risk instead of carbon gain. However, the leaves of 2-year-old saplings accumulated more soluble sugars and showed lower stomatal conductance and higher stomatal density under the sun than under shade conditions. The nonphotochemical quenching of sun leaves increased with plant age, indicating that the photoprotective capacity was enhanced with ontogeny. The leaf plasticity increasing along the ontogeny of juvenile P. bournei may contribute to the adaptation from shade to sun. Our study provides new insights into understanding the influence of ontogeny on shade responses of late succession trees in subtropical forests.

Funder

Key Scientific and Technological Grant of Zhejiang for Breeding New Agricultural Varieties

National Natural Science Foundation of China

Scientific Development and Research Foundation of Zhejiang A&F University

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3