Blockchain-Based Cold Chain Traceability with NR-PBFT and IoV-IMS for Marine Fishery Vessels

Author:

Zhang Zheng1ORCID,Zhu Haonan1,Liang Hejun1ORCID

Affiliation:

1. College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China

Abstract

Due to limited communication, computing resources, and unstable environments, traditional cold chain traceability systems are difficult to apply directly to marine cold chain traceability scenarios. Motivated by these challenges, we construct an improved blockchain-based cold chain traceability system for marine fishery vessels. Firstly, an Internet of Vessels system based on the Iridium Satellites (IoV-IMS) is proposed for marine cold chain monitoring. Aiming at the problems of low throughput, long transaction latency, and high communication overhead in traditional cold chain traceability systems, based on the Practical Byzantine Fault Tolerance (PBFT) consensus algorithm, a Node-grouped and Reputation-evaluated PBFT (NR-PBFT) is proposed to improve the reliability and robustness of blockchain system. In NR-PBFT, an improved node grouping scheme is designed, which introduces a consistent hashing algorithm to divide nodes into consensus and candidate sets, reducing the number of nodes participating in the consensus process, to lower communication overhead and transaction latency. Then, a reputation evaluation model is proposed to improve the node selection mechanism of NR-PBFT. It enhances the enthusiasm of nodes to participate in consensus, which considers the distance between fishery vessels, data size, and refrigeration temperature factors of nodes to increase throughput. Finally, we carried out experiments on marine fishery vessels, and the effectiveness of the cold chain traceability system and NR-PBFT were verified. Compared with PBFT, the transaction latency of NR-PBFT shortened by 81.92%, the throughput increased by 84.21%, and the communication overhead decreased by 89.4%.

Funder

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3