Affiliation:
1. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
Abstract
A wideband Doppler Effect is a significant challenge for underwater acoustic communications (UAC). This paper proposes a new two-stage structure of direct adaptive multi-resampling turbo equalizer (DAM-TEQ) for solving the problem of large timescale errors in time-varying channels, which uses an innovative adaptive time-domain resampling method for Doppler estimation and compensation. In this equalizer, the received signal is first fed into the first-stage structure, in which an adaptive resampling is performed using equalization coefficient detection to achieve a Doppler rough estimation. After the processing is completed, it is fed into the second-stage structure for joint equalization and decoding, effectively reducing the error of information transmission. Compared with the conventional turbo equalizer (TEQ) based on timescale estimation, the proposed equalizer can avoid the problem of the Doppler Effect not being accurately estimated in time-varying channels, with only a slight increase in complexity. Simulations and lake trails show that the equalizer can effectively perform a Doppler estimation and compensation in time-varying channels, and has a better bit error rate (BER) performance than the traditional timescale-based TEQ.
Funder
National Natural Science Foundation of China
Science and Technology Innovation Program of Hunan Province