Novel Modeling for the Calculation of the Center of Lateral Resistance Position of Different Ships Making Use of a Full Mission Bridge Simulator and AI Tools

Author:

Pérez-Canosa José M.1ORCID,Lama-Carballo Francisco Javier1,Salgado-Don Alsira1,Cao-Feijóo Genaro1ORCID,Pacheco Eliseo A.1,Orosa José A.1ORCID

Affiliation:

1. Department of Navigation Sciences and Marine Engineering, University of A Coruña, Paseo de Ronda, 51, 15011 A Coruña, Spain

Abstract

Ship maneuvering in ports is increasingly reduced because the increase in ship size is not proportional to the increase in port areas. Furthermore, the number of assisted vessels and the need for tugboats working in densely populated areas make it necessary to reduce the number of involved tugboats, reducing pollution and costs. Therefore, shiphandlers must know, in addition to the pivot point, the center of lateral resistance under any circumstance to optimize the assistance from tugboats and improve maritime navigation. From the literature, it is evident that the practical determination of the center of lateral resistance is still unknown. This paper aims to propose novel mathematical models to identify the position of this point and the most important variables that determine its position. For that, data of different ships in different conditions were obtained from a full mission bridge simulator. Afterwards, 15 novel mathematical models were developed, making use of artificial intelligence tools and training neural networks. The high determination factor reached in some models shows the accuracy of the obtained models. One advantage of the presented models is that they are very easy to be applied by shiphandlers, because highly well-known parameters are involved. Moreover, original 3D charts showing the combination of the input variables were generated to identify the map of the whole process. The very simple new models obtained and the novel 3D charts shown in the present paper can be considered useful and applicable by the shiphandlers of most of the merchant fleet to improve the efficiency and safety of maritime navigation in increasingly restricted waters.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3