Wave–Induced Soil Dynamics and Shear Failure Potential around a Sandbar

Author:

Chen Ning12,Tong Linlong12,Zhang Jisheng12,Guo Yakun34ORCID,Liu Bo5,Zhou Zhipeng5

Affiliation:

1. Key Laboratory of Ministry of Education for Coastal Disaster and Protection, Hohai University, Nanjing 210024, China

2. College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210024, China

3. College of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China

4. Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK

5. China Power Engineering Consulting Group Co., Ltd., Beijing 100032, China

Abstract

Sandbars are commonly encountered in coastal environments, acting as natural protections during storm events. However, the sandbar response to waves and possible shear failure is poorly understood. In this research, a two–dimensional numerical model is settled to simulate the wave-induced sandbar soil dynamics and instability mechanism. The model, which is based upon the Reynolds-averaged Navier–Stokes (RANS) equations and Biot’s consolidation theory, is validated using available experiments. Parametric studies are then conducted to appraise the impact of the wave parameters and soil properties on soil dynamics. Results indicate that the vertical distribution of the maximum vertical effective stress in the sandbar is different from that in the flat seabed, which decreases rapidly along the soil depth and then increases gradually. The impact of soil permeability and saturation on the vertical effective stress distribution around the sandbar also differ from that in the flat seabed. Unlike the flat seabed, the vertical distribution of shear stress in the sandbar increases with an increasing wave period. The sandbar soil shear failure potential is discussed based upon the Mohr–Coulomb criterion. Results show that the range of shear failure around the sandbar is wider and the depth is deeper when the wave trough arrives.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3