Event-Triggered Neural Adaptive Distributed Cooperative Control for the Multi-Tug Towing of Unactuated Offshore Platform with Uncertainties and Unknown Disturbances

Author:

Geng Shaolong1,Tuo Yulong12ORCID,Wang Yuanhui3,Peng Zhouhua12,Wang Shasha12ORCID

Affiliation:

1. College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, China

2. Dalian Key Laboratory of Swarm Control and Electrical Technology for Intelligent Ships, Dalian 116026, China

3. College of Intelligent System Science and Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

An event-triggered neural adaptive cooperative control is proposed for the towing system (TS) with model parameter uncertainties and unknown disturbances. Different from ordinary multi-vessel formation control, the tugs and unactuated offshore platform in the TS are connected together by towlines, and the resultant tension of the towlines serves as the actual drag force for the platform. Initially, based on the radial basis function neural network (RBFNN), an adaptive RBFNN is designed to compensate unknown disturbances and model parameter uncertainties of the TS, and we use minimal learning parameter (MLP) algorithm to reduce the online learning parameters of adaptive RBFNN. Combined with dynamic surface technology and event-triggered control (ETC) mechanism, an event-triggered neural adaptive virtual controller is designed to obtain the desired drag force of the platform. According to the quadratic programming algorithm, the desired drag force is allocated as the desired tensions of towlines. Subsequently, the desired towline length and the desired position information of the tugs are obtained sequentially through the towline model and the position relationship between the tugs and the platform. Then, according to the desired positions of tugs, an event-triggered neural adaptive distributed cooperative controller is designed for achieving the multi-tug towing of the offshore platform. The ETC mechanism is introduced to reduce the communication burden within the TS and the execution frequency of the tugs’ thrusters. Finally, the stability of the closed-loop system is proven using the Lyapunov theory, and the ETC mechanism proves that no Zeno behavior occurs. The effectiveness of the ETC mechanism and the MLP-based adaptive RBFNN on the controllers of TS is verified through simulations and comparison analysis.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Dalian Innovative Support Scheme for High-level Talents

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Liaoning Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3