Numerical Simulation of the Behavior of Caisson Based on Physical Modeling

Author:

Huang Sifen1,Han Yuwei2,Li Shuyi3,Zhou Mi3

Affiliation:

1. Guangdong Shunde Power Design Institute Co., Ltd., Foshan 528399, China

2. Guangzhou Airport Construction Investment Group Co., Ltd., Guangzhou 510640, China

3. State Key Laboratory of Subtropical Building Science, South China Institute of Geotechnical Engineering, South China University of Technology, Guangzhou 510640, China

Abstract

Stiffened caissons are a new kind of offshore platform foundation which has been widely used in recent years. Stiffeners are employed to avoid buckling during the installation process. However, they also create a significant challenge in terms of understating the soil-flow patterns and corresponding installation resistance prediction. Although centrifuge and in situ tests can simulate the caisson installation process very well, their high costs prevent their widespread application. Model tests have been widely used in research on caisson behavior during installation, as they are convenient and cost less compared to centrifuge and prototype tests. However, the quantitative conclusions of the resulting predictions of installation resistance have some uncertainties because it is quite hard to strictly follow the similarity principle in 1 g model tests. Therefore, it is important to establish a method to calibrate the data from model tests, providing better estimates of caisson behavior in field tests. In our research, large deformation finite element (LDFE) analyses were conducted to provide insights into differences in the outcomes of caisson installation approaches between prototype tests and 1 g model tests. Prior to carrying out parametric studies, validations were conducted with good results. The results show that normalized soil strength significantly influences the behavior of caissons of various dimensions in 1 g model tests. In uniform clay, caissons exhibit consistent installation behavior; otherwise, they show significant differences. Based on systematic research, this paper reveals the mechanisms of the difference between model tests and prototype tests with different sizes of caissons and identifies the factors influencing these differences.

Funder

National Natural Science Foundation of China

fundamental research funds for the central universities

Special Fund Project of Six Major Marine Industries in 2022

Shenzhen Steady Support Project for Universities Key program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3