Behavior of PIP Slip Joint in the Offshore Wind Monopile under Combined Load Considering Local Buckling

Author:

Islam Md Ariful1ORCID,Ali Sajid1ORCID,Park Hongbae2,Lee Daeyong2

Affiliation:

1. Energy Innovation Research Center for Wind Turbine Support Structures, Kunsan National University, 558 Daehak-ro, Gunsan-si 54150, Jeollabuk-do, Republic of Korea

2. Department of Wind Energy, The Graduate School of Kunsan National University, 558 Daehak-ro, Gunsan-si 54150, Jeollabuk-do, Republic of Korea

Abstract

Considering the practical conditions, it has been observed that the support structures of wind turbines inevitably experience bending and axial compression, both during the installation phase and throughout their operational lifespan. The monopile is the most commonly utilized support structure for offshore applications and a reliable method for creating a detachable section within these structures is using a Pile-in-Pile (PIP) slip joint. Consequently, the behavior of PIP slip joints, under combined axial compression and bending, has been meticulously investigated. To facilitate a thorough analysis, overlapping lengths proportional to the pile diameters have been used, encompassing three distinct variations. This approach allows for a comprehensive understanding of structural integrity and performance under varying stress conditions, which are comprehensively understood and accounted for in design considerations. The current study builds upon assessing the pure bending characteristics of slip joints in cylindrical hollow section (CHS) structures. Additionally, two ring stoppers have been strategically employed inside the piles to withstand the axial load. Furthermore, the complexity of the pressure acting in the overlapping length, attributed to the frictional coefficient in that region, has been carefully addressed. The current research also encompasses a comprehensive overview of the P-M envelopes for the existing arrangements, with a particular focus on non-linear buckling, which is known to significantly influence the performance of tubular structures. Finally, a design equation was introduced to concisely describe the behavior of the components and compare it with other design equations provided by an established code.

Funder

Korean government

Korea government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3