Enhancing Wave Energy Converters: Dynamic Inertia Strategies for Efficiency Improvement

Author:

Maria-Arenas Aleix1ORCID,Garrido Aitor J.2,Garrido Izaskun2

Affiliation:

1. Wedge Global SL, 35107 Las Palmas de Gran Canaria, Spain

2. Automatic Control Group—ACG, Institute of Research and Development of Processes—IIDP, Department of Automatic Control and Systems Engineering, Engineering School of Bilbao, University of the Basque Country (UPV/EHU), 48012 Bilbao, Spain

Abstract

Wave energy conversion is a promising field of renewable energy, but it still faces several technological and economic challenges. One of these challenges is to improve the energy efficiency and adaptability of Wave Energy Converters to varying wave conditions. A technological approach to solve this efficiency challenge is the negative spring mechanisms illustrated in recent studies. This paper proposes and analyzes a novel negative spring technological concept that dynamically modifies the mass and inertia of a Wave Energy Converter by transferring seawater between its compartments. The added value of the presented technology relies on interoperability, ease of manufacturing and operating, and increased energy efficiency for heterogeneous sea states. The concept is presented in two analyzed alternatives: a passive one, which requires no electrical consumption and is purely based on the relative motion of the bodies, and an active one, which uses a controlled pump system to force the water transfer. The system is evaluated numerically using widely accepted simulation tools, such as WECSIM, and validated by physical testing in a wave flume using decay and regular test scenarios. Key findings include a relevant discussion about system limitations and a demonstrated increase in the extracted energy efficiency up to 12.7% while limiting the maximum power extraction for a singular wave frequency to 3.41%, indicating an increased adaptability to different wave frequencies because of the amplified range of near-resonance operation of the WEC up to 0.21 rad/s.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3