Unveiling the Sensitivity Analysis of Port Carbon Footprint via Power Alternative Scenarios: A Deep Dive into the Valencia Port Case Study

Author:

Issa-Zadeh Seyed Behbood1ORCID,Esteban M. Dolores1,López-Gutiérrez José-Santos1ORCID,Garay-Rondero Claudia Lizette2ORCID

Affiliation:

1. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain

2. Institute for the Future of Education, School of Engineering and Sciences Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico

Abstract

The Port of Valencia, a prominent maritime center, is actively working towards minimizing its carbon emissions and aims to become a completely carbon-neutral port soon. This research uses data-driven sensitivity analysis to explore realistic power-generating options for a seaport to reduce its emissions. This approach comprises changing key parameters in power consumption and deploying renewable energies (rather than electricity and infrastructure prices, which are beyond the scope of this study) to assess their impact on the port’s overall emissions profile. Through sensitivity analysis, policymakers and managers discover each scenario’s efficacy and find the best decarbonization strategies. After thoroughly examining four realistic scenarios, our research findings show that each scenario’s emission reduction share and sensitivity are practical and feasible. It becomes clear that gradually replacing traditional fossil fuels for electricity generation with renewables is a reasonable and realistic option for emissions reduction. The results demonstrate that focusing on reasonable targets, such as replacing 30% and 50% of electricity generation with renewables, is more achievable and beneficial in the medium term than ambitious goals, like replacing all electricity with renewable energy. This research contributes to reducing emissions of the Port of Valencia by using data-driven sensitivity analysis to find practical renewable energy strategies. It provides actionable insights for managers and policymakers to implement feasible decarbonization plans, emphasizing gradual adoption of renewables over ambitious goals, thus supporting sustainable maritime operations.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3