A Remote Sensing Water Information Extraction Method Based on Unsupervised Form Using Probability Function to Describe the Frequency Histogram of NDWI: A Case Study of Qinghai Lake in China

Author:

Liu Shiqi1,Qiu Jun12,Li Fangfang3ORCID

Affiliation:

1. School of Civil Engineering and Water Resources, Qinghai University, Xining 810016, China

2. Department of Water Resources and Hydropower Engineering, Tsinghua University, Beijing 100084, China

3. School of Water Resources and Civil Engineering, China Agricultural University, Beijing 100091, China

Abstract

With escalating human activities and the substantial emissions of greenhouse gases, global warming intensifies. This phenomenon has led to increased occurrences of various extreme hydrological events, precipitating significant changes in lakes and rivers across the Qinghai Tibet Plateau. Therefore, accurate information extraction about and delineation of water bodies are crucial for lake monitoring. This paper proposes a methodology based on the Normalized Difference Water Index (NDWI) and Gumbel distribution to determine optimal segmentation thresholds. Focusing on Qinghai Lake, this study utilizes multispectral characteristics from the US Landsat satellite for analysis. Comparative assessments with seven alternative methods are conducted to evaluate accuracy. Employing the proposed approach, information about water bodies in Qinghai Lake is extracted over 38 years, from 1986 to 2023, revealing trends in area variation. Analysis indicates a rising trend in Qinghai Lake’s area following a turning point in 2004. To investigate this phenomenon, Pearson correlation analysis of temperature and precipitation over the past 38 years is used and unveils the fact that slight precipitation impacts on area and that there is a positive correlation between temperature and area. In conclusion, this study employs remote sensing data and statistical analysis to comprehensively investigate mechanisms driving changes in Qinghai Lake’s water surface area, providing insights into ecological shifts in lake systems against the backdrop of global warming, thereby offering valuable references for understanding and addressing these changes.

Funder

National Natural Science Foundation of China

Key R&D program of the Science and Technology Department of Tibet

OpenResearch Fund Program of State Key Laboratory of Hydroscience and Engineering

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3