Research on Bi-Level Objective Programming Model of Water Resources Uncertainty Based on Water Rights Trading—A Case Study of the Yehe Irrigation District in Hebei Province, China

Author:

Li Shuoxin12,Suo Meiqin12ORCID,Fan Leilei3,Liu Dongkun12ORCID

Affiliation:

1. School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan 056038, China

2. Hebei Key Laboratory of Intelligent Water Conservancy, Hebei University of Engineering, Handan 056038, China

3. Hebei Hydraulic Research Institute, Shijiazhuang 050051, China

Abstract

Water resource allocation systems typically involve multi-level decision-making, with each level having distinct goals and interests, while being influenced by various factors such as social, economic, environmental, and policy planning. The decision-making in water resource allocation systems is characterized by complex uncertainty factors and dynamic changes. In light of this, this study integrates stochastic chance-constrained programming, dynamic programming, bi-level programming, goal programming, and water rights trading to construct a bi-level objective programming model of water resource uncertainty based on water rights trading. The model not only effectively represents the random uncertainty, dynamic characteristics, interests of decision-making levels, and planning requirements of policies in water resource allocation systems but also utilizes market mechanisms to enable compensated transfer of water rights, fully leveraging the role of water rights marketization in water resource allocation. Taking the Yehe River Irrigation District in Hebei Province of China as an illustrative case study, the specific allocation scheme of each stage under the guaranteed rate of 50% in 2025 and the water rights trading results of each sub-region are obtained. Compared with the bi-level objective programming model of water resources uncertainty without water rights trading, the results show that the water consumption per CNY ten thousand GDP(WG)of the irrigation district decreased by 3.42%, and the economic benefits of Luquan District, Jingxing County, Pingshan County, and Yuanshi County in each sub-region increased by 19.17%, 7.19%, 15.11%, and 4.94%, respectively. This improves regional water use efficiency and economic benefits and provides a scientific basis for regional water resource allocation.

Funder

provincial water science and technology plan project of Hebei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3