Thermo-Fluidic Characterizations of Multi-Port Compact Thermal Model of Ball-Grid-Array Electronic Package

Author:

Bissuel Valentin,Joly Frédéric,Monier-Vinard EricORCID,Neveu Alain,Daniel Olivier

Abstract

The concept of a single-input/multi-output thermal network was proposed by the Development of Libraries of Physical models for an Integrated design environment (DELPHI) consortium more than twenty years ago. The present work highlights the recent improvements made to efficiently derive a low-computing-effort model from a fully detailed numerical model and to characterize its performances. The temperature predictions of a deduced ball-grid-array (BGA) dynamic compact thermal model are compared to those of a realistic three-dimensional representation, including the large set of internal copper traces, as well as its board structure, which has been validated by experiment. The current study discloses a method for creating an amalgam reduced-order modal model (AROMM) for that electronic component family that allows the preservation of the geometry integrity and shortening scenarios computation. Typically, the AROMM method reduces by a factor of 600 the computation time needed to obtain the solution while keeping the error on the maximum temperature below 2%. Then, a meta-heuristic optimization is run to derive a more practical low-order resistor capacitor model that enables a thermo-fluidic analysis at the board level. Based on the calibrated numerical model, a novel AROMM method was investigated in order to address the chip behavior submitted to multiple heat sources. The first results highlight the capability to enforce a non-uniform power distribution on the upper surface of the silicon chip. Thus, the chip design layout can be analyzed and optimized to prevent thermal and reliability issues.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3