Systematic Frequency and Statistical Analysis Approach to Identify Different Gas–Liquid Flow Patterns Using Two Electrodes Capacitance Sensor: Experimental Evaluations

Author:

Al-Alweet Fayez M.,Jaworski Artur J.ORCID,Alghamdi Yusif A.ORCID,Almutairi Zeyad,Kołłątaj Jerzy

Abstract

This work proposes a method to distinguish between various flow patterns in a multiphase gas–liquid system. The complete discrimination between different flow patterns can be achieved by mapping the corresponding frequency and statistical parameters. These parameters are usually obtained from further analysis conducted on the signal data of the utilized sensor. The proposed technique is based on establishing interrelationships between these parameters, namely the mean (m), the standard deviation ( σ ¯ ), power spectral density (PSD), the width of the characteristic frequency peaks (Δƒ), the skewness ( γ 1 ) and the kurtosis ( γ 2 ). Therefore, a relatively simple electrical capacitance sensor with two electrodes was designed and implemented on a two-phase flow apparatus with a circular pipe. The experimental operating conditions comprised of different combinations of air–water superficial velocities at three inclinations (i.e., horizontal, upward 15° and upward 30°). This research discusses in specific the analysis underlying flow patterns identification method and the rationale for selecting the proposed approach. The results showed that some parameters found to be more valuable than others such as m, σ ¯ and Δƒ. Besides, combining two sets of these statistical graphs which are (a) σ ¯ vs. Δƒ with Δƒ vs. m (or Δƒ vs. total power), (b) Δƒ vs. total power with γ 1 vs. σ ¯ (or γ 2 vs. σ ¯ ), and (c) σ ¯ vs. m with Δƒ vs. m (or Δƒ vs. total power), allowed all flow patterns field to be identified clearly at all inclinations. It is therefore concluded that for any gas–liquid multiphase flow system, the reported approach can be used reliably to discriminate between different generated flow patterns.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3