Experimental Assessment on Air Clearance of Multiple Valve Unit Considering Switching Impulse and DC Superimposed Switching Impulse

Author:

Koo Jae-HongORCID,Seong Jae-Kyu,Hwang Ryul,Lee Bang-WookORCID

Abstract

Multiple valve unit (MVU), which converts AC to DC and DC to AC, is one of the key elements of high voltage DC (HVDC) transmission. Therefore, the insulation design of MVU against overvoltage should be considered for the stable and reliable operation of HVDC transmission system. Especially, the air clearance of MVU should be calculated based the switching impulse, since it is fatal to MVU in terms of electrical insulation. However, the previous studies were limited to wave front, and the air clearance of the switching impulse is specified only for an ultra-high voltage (UHV) above 750 kV. As a result, it is difficult to calculate the air clearance of MVU which must endure for a switching impulse under 750 kV. In addition, when the switching impulse introduced while the MVU is in normal operation, it is superimposed to DC and creates the most severe situation, but the studies on such subjects are also insufficient. Therefore, as a fundamental step to calculate the air clearance of MVU, the dielectric characteristics of switching impulse and DC superimposed switching impulse in air have been investigated. The experiments on switching impulse showed that the critical flashover voltage was varied according to the curvature of electrode in the gap distance, up to eight times of the electrode radius. However, beyond that gap distance, the critical flashover voltage became similar, regardless of the radius of electrodes. In case of the superimposed experiment, it was performed according to DC pre-stress level and the polarities of switching impulse. The results were most severe when the positive switching impulse was superimposed on the positive DC, and the peak voltage at which flashover occurs was independent of DC pre-stress.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference23 articles.

1. 60071-1: Insulation Co-Ordination—Part 1: Definitions, Principles and Rules,2011

2. IEC 60071-2: Insulation Co-Ordination-Part 2: Application Guide,2018

3. High Voltage and Electrical Insulation Engineering;Arora,2011

4. Switching and Lightning Impulse Discharge Characteristics of Large Air Gaps and Long Insulator Strings

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3