Quinone Based Materials as Renewable High Energy Density Cathode Materials for Rechargeable Magnesium Batteries

Author:

Bitenc JanORCID,Pavčnik Tjaša,Košir Urban,Pirnat KlemenORCID

Abstract

Organic cathode materials are promising cathode materials for multivalent batteries. Among organic cathodes, anthraquinone (AQ) has already been applied to various metal‒organic systems. In this work, we compare electrochemical performance and redox potential of AQ with 1,4-naphthoquinone (NQ) and 1,4-benzoquinone (BQ), both of which offer significantly higher theoretical energy density than AQ and are tested in two different Mg electrolytes. In Mg(TFSI)2-2MgCl2 electrolyte, NQ and BQ exhibit 0.2 and 0.5 V higher potential than AQ, respectively. Furthermore, an upshift of potential for 200 mV in MgCl2-AlCl3 electrolyte versus Mg(TFSI)2-2MgCl2 was confirmed for all used organic compounds. While lower molecular weights of NQ and BQ increase their specific capacity, they also affect the solubility in used electrolytes. Increased solubility lowers long-term capacity retention, confirming the need for the synthesis of NQ and BQ based polymers. Finally, we examine the electrochemical mechanism through ex situ attenuated total reflectance infrared spectroscopy (ATR-IR) and comparison of ex situ cathode spectra with spectra of individual electrode components. For the first time, magnesium anthracene-9,10-bis(olate), a discharged form of AQ moiety, is synthesized, which allows us to confirm the electrochemical mechanism of AQ cathode in Mg battery system.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

MDPI AG

Subject

General Materials Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3