Author:
Christé ,Esteves da Silva ,Pinto da Silva
Abstract
The efficiency and associated environmental impacts of different N-doping strategies of carbon dots (CDs) were evaluated. More specifically, N-doped CDs were prepared from citric acid via two main synthesis routes: Microwave-assisted hydrothermal treatment with addition of N-containing small organic molecules (urea and ethylenediamine (EDA)); and microwave-assisted solvothermal treatment in N-containing organic solvents (n,n-dimethylformamide (DMF), acetonitrile and pyridine). These syntheses produced CDs with similar blue emission. However, XPS analysis revealed that CDs synthesized via both hydrothermal routes presented a better N-doping efficiency (~15 at.%) than all three solvothermal-based strategies (0.6–7 at.%). However, from the former two hydrothermal strategies, only the one involving EDA as a nitrogen-source provided a non-negligible synthesis yield, which indicates that this should be the preferred strategy. This conclusion was supported by a subsequent life cycle assessment (LCA) study, which revealed that this strategy is clearly the most sustainable one from all five studied synthesis routes.
Subject
General Materials Science
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献