Author:
Xie Xuping,Zhang Guannan,Webster Clayton G.
Abstract
In this effort we propose a data-driven learning framework for reduced order modeling of fluid dynamics. Designing accurate and efficient reduced order models for nonlinear fluid dynamic problems is challenging for many practical engineering applications. Classical projection-based model reduction methods generate reduced systems by projecting full-order differential operators into low-dimensional subspaces. However, these techniques usually lead to severe instabilities in the presence of highly nonlinear dynamics, which dramatically deteriorates the accuracy of the reduced-order models. In contrast, our new framework exploits linear multistep networks, based on implicit Adams–Moulton schemes, to construct the reduced system. The advantage is that the method optimally approximates the full order model in the low-dimensional space with a given supervised learning task. Moreover, our approach is non-intrusive, such that it can be applied to other complex nonlinear dynamical systems with sophisticated legacy codes. We demonstrate the performance of our method through the numerical simulation of a two-dimensional flow past a circular cylinder with Reynolds number Re = 100. The results reveal that the new data-driven model is significantly more accurate than standard projection-based approaches.
Funder
U.S. Department of Energy
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference41 articles.
1. The structure of inhomogeneous turbulent flows;Lumley;Atmos. Turbul. Radio Wave Propag.,1967
2. Reduced-Order Modelling for Flow Control;Noack,2011
3. Model Reduction for Control System Design;Obinata,2012
4. The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows
5. Model Reduction for Flow Analysis and Control
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献