Advances in the Production of PBCA Microparticles Using a Micromixer with HH-Geometry in a Microfluidic System

Author:

Vieira Aline Rocha12,Oliveira Aline Furtado2ORCID,Pessoa Fabiana Vieira Lima Solino3ORCID,Miranda Beatriz Nogueira Messias de2,Baby André Rolim1ORCID

Affiliation:

1. Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil

2. Micromanufacturing Laboratory, Center for Bionanomanufacturing, Institute for Technological Research, São Paulo 05508-901, Brazil

3. Department of Health Sciences, Faculty of Pharmacy, Federal University of Espírito Santo, São Mateus 29932-540, Brazil

Abstract

Different reaction control methods for producing nano/microstructures of poly(butyl cyanoacrylate) (PBCA) have been studied, focusing on pH and monomer-to-initiator ratios. However, these methods often require multiple steps and reagents. In the synthesis of PBCA microparticles using three versions of micromixers designed with HH geometry and varying numbers of channels (4, 10, and 15), different synthesis formulations were investigated by varying monomer concentrations. PBCA microparticles synthesized with 19.2% (w/w) n-butyl cyanoacrylate (n-BCA) monomer, a residence time of 0.06 s, a flow rate of 78 mL·min−1, and a phase ratio of 45/55 (W/O), exhibited an average diameter of 642.2 nm as determined by dynamic light scattering (DLS) analysis. In contrast, PBCA microparticles synthesized with 5.0% (w/w) n-BCA monomer, the same residence time of 0.06 s, a flow rate of 39 mL·min−1, and a phase ratio of 20/80 (W/O), exhibited an average diameter of 74.73 µm according to laser diffraction particle size analysis. Polymer formation was confirmed by Fourier-transform infrared (FTIR) spectroscopy in both formulation and process conditions. These results indicate that the parameters for the production of microparticles with different monomer concentrations in the microfluidic system with HH geometry and 15 channels can be optimized for potential applications in cosmetics and pharmaceutical ingredients.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3