Repurposing of Four Drugs as Anti-SARS-CoV-2 Agents and Their Interactions with Protein Targets

Author:

Vesga Luis C.ORCID,Ruiz-Hernández Camilo A.,Alvarez-Jacome Jeimmy J.,Duque Jonny E.ORCID,Rincon-Orozco BladimiroORCID,Mendez-Sanchez Stelia C.ORCID

Abstract

Although there are existing vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), new COVID-19 cases are increasing due to low immunization coverage and the emergence of new variants. For this reason, new drugs to treat and prevent severe COVID-19 are needed. Here, we provide four different FDA-approved drugs against SARS-CoV-2 proteins involved in the entry and replication process, aiming to identify potential drugs to treat COVID-19. We use the main protease (Mpro), the spike glycoprotein (S protein), and RNA-dependent RNA polymerase (RdRp) as protein targets for anti- SARS-CoV-2 drugs. In our constructed database, we selected different drugs against each target (Mpro, S protein, and RdRp) based on their common interactions with relevant residues involved in viral entry at the host cell and replication. Furthermore, their stability inside the binding pocket, as well as their predicted binding-free energy, allow us to provide new insight into the possible drug repurposing of viomycin (interacting with Mpro) due to its interactions with key residues, such as Asn 143, Glu 166, and Gln 189 at the same time as hesperidin (interacting with the S protein) is interacting with residues Tyr 449, Ser 494, and Thr 500, keeping inside the predicted binding pocket, as well as interacting with residues in different variants of concern. Finally, we also suggest nystatin and elvitegravir (interacting with RdRp) as possible drugs due to their stability within the predicted pocket along the simulation and their interaction with key residues, such as Asp 760, Asp 761, and Asp 618. Altogether our results provide new knowledge about the possible mechanism of the inhibition of viomycin, hesperidin, elvitegravir, and nystatin to inhibit the viral life cycle of SARS-CoV-2 and some of its variants of concern (VOC). Additionally, some iodide-based contrast agents were also found to bind the S protein strongly, i.e., iohexol (−58.99 Kcal/mol), iotrolan (−76.19 Kcal/mol), and ioxilan (−62.37 Kcal/mol). Despite the information we report here as the possible strong interaction between these contrast agents and the SARS-CoV-2′s S protein, Mpro, and RdRp, we believe that further investigation, including chemical modifications in their structures, are needed for COVID-19 treatment.

Funder

Colciencias

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3