Affiliation:
1. Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
2. Department of Pharmaceutical Chemistry, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
3. Sun Herb Thai Chinese Manufacturing, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
Abstract
This study aimed to prepare tablets of black pepper extract using the Design of Experiments (DOE) approach. The levels of three factors—compressional force, croscarmellose sodium (CCS), and microcrystalline cellulose (MCC)—were screened using the one-factor-at-a-time technique, followed by the DOE utilizing the Box–Behnken design. The respective variations for each factor were as follows: compressional force (1500–2500 psi), CCS (1–3%), and MCC (32–42%). The results indicated that compressional force significantly decreased tablet thickness and friability, while increasing hardness and prolonging disintegration time. CCS significantly shortened disintegration time but did not affect tablet thickness, hardness, and friability. MCC, on the other hand, significantly increased tablet thickness and hardness, while significantly decreasing friability. Furthermore, the study observed interactions among factors and quadratic effects of each factor, which significantly influenced tablet properties. The optimal tablet formulation consisted of 2.2% CCS, 37% MCC, and a compressional force of 2000 psi. These tablets had a weight of 198.39 ± 0.49 mg, a diameter of 9.67 ± 0.01 mm, a thickness of 1.98 ± 0.02 mm, a hardness of 7.36 ± 0.24 kP, a friability of 0.11 ± 0.02%, and a disintegration time of 5.59 ± 0.39 min. The actual values obtained using the optimal conditions closely matched the predicted values, with a low percent error (less than 5%). In conclusion, the application of the DOE approach successfully developed tablets of black pepper extract, which can be utilized as food supplement products.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献