Improved Solubility and Dissolution Rates in Novel Multicomponent Crystals of Piperine with Succinic Acid

Author:

Zaini ErizalORCID,Afriyani ,Fitriani LiliORCID,Ismed Friardi,Horikawa Ayano,Uekusa HidehiroORCID

Abstract

The objectives of this study were to prepare and characterize a novel piperine–succinic acid multicomponent crystal phase and to evaluate the improvement in the solubility and dissolution rate of piperine when prepared in the multicomponent crystal formation. The solid-state characterization of the novel multicomponent crystal was performed by powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform-infrared (FT-IR) spectroscopy. Solubility and dissolution rate profiles were evaluated in distilled water. The physical stability was evaluated under high relative humidity (75% and 100% RH). The determination of the single crystal X-ray diffraction structure revealed that this novel multicomponent crystal was a cocrystalline phase of piperine–succinic acid (2:1 molar ratio). The differential scanning calorimetry thermogram of the cocrystal showed a single and sharp endothermic peak at 110.49 °C. The cocrystal resulted in greater solubility and a faster dissolution rate of piperine than intact piperine. This improvement was a result of the formation of a channel structure in the cocrystal. In addition, the cocrystal was stable under a humid condition.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3