Estimation of Fast and Slow Adaptions in the Tactile Sensation of Mechanoreceptors Mimicked by Hybrid Fluid (HF) Rubber with Equivalent Electric Circuits and Properties

Author:

Shimada Kunio1ORCID

Affiliation:

1. Faculty of Symbiotic Systems Sciences, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan

Abstract

In order to advance engineering applications of robotics such as wearable health-monitoring devices, humanoid robots, etc., it is essential to investigate the tactile sensations of artificial haptic sensors mimicking bioinspired human cutaneous mechanoreceptors such as free nerve endings, Merkel’s cells, Krause end bulbs, Meissner corpuscles, Ruffini endings, and Pacinian corpuscles. The generated receptor’s potential response to extraneous stimuli, categorized as slow adaption (SA) or fast adaption (FA), is particularly significant as a typical property. The present study addressed the estimation of SA and FA by utilizing morphologically fabricated mechanoreceptors made of our proposed magnetically responsive intelligent fluid, hybrid fluid (HF), and by applying our proposed electrolytic polymerization. Electric circuit models of the mechanoreceptors were generated using experimental data on capacitance and inductance on the basis of the electric characteristics of impedance. The present results regarding equivalent firing rates based on FA and SA are consistent with the FA and SA findings of vital mechanoreceptors by biomedical analysis. The present investigative process is useful to clarify the time of response to a force on the fabricated artificial mechanoreceptor.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3