Proposal for an Embedded System Architecture Using a GNDVI Algorithm to Support UAV-Based Agrochemical Spraying

Author:

Basso MaikORCID,Stocchero Diego,Ventura Bayan Henriques Renato,Vian André Luis,Bredemeier Christian,Konzen Andréa Aparecida,Pignaton de Freitas EdisonORCID

Abstract

An important area in precision agriculture is related to the efficient use of chemicals applied onto fields. Efforts have been made to diminish their use, aiming at cost reduction and fewer chemical residues in the final agricultural products. The use of unmanned aerial vehicles (UAVs) presents itself as an attractive and cheap alternative for spraying pesticides and fertilizers compared to conventional mass spraying performed by ordinary manned aircraft. Besides being cheaper than manned aircraft, small UAVs are capable of performing fine-grained instead of the mass spraying. Observing this improved method, this paper reports the design of an embedded real-time UAV spraying control system supported by onboard image processing. The proposal uses a normalized difference vegetation index (NDVI) algorithm to detect the exact locations in which the chemicals are needed. Using this information, the automated spraying control system performs punctual applications while the UAV navigates over the crops. The system architecture is designed to run on low-cost hardware, which demands an efficient NDVI algorithm. The experiments were conducted using Raspberry Pi 3 as the embedded hardware. First, experiments in a laboratory were conducted in which the algorithm was proved to be correct and efficient. Then, field tests in real conditions were conducted for validation purposes. These validation tests were performed in an agronomic research station with the Raspberry hardware integrated into a UAV flying over a field of crops. The average CPU usage was about 20% while memory consumption was about 70 MB for high definition images, with 4% CPU usage and 20.3 MB RAM being observed for low-resolution images. The average current measured to execute the proposed algorithm was 0.11 A. The obtained results prove that the proposed solution is efficient in terms of processing and energy consumption when used in embedded hardware and provides measurements which are coherent with the commercial GreenSeeker equipment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3