Abstract
A high-sensitivity microstrip patch sensor antenna (MPSA) loaded with a meander-line slot (MLS) is proposed for the measurement of relative permittivity. The proposed MPSA was designed by etching the MLS along the radiating edge of the patch antenna, and it enhanced the relative permittivity sensitivity with an additional effect of miniaturization in the patch size by increasing the slot length. The sensitivity of the proposed MPSA was compared with that of a conventional rectangular patch antenna and a rectangular slit (RS)-loaded MPSA, by measuring the shift in the resonant frequency of the input reflection coefficient. Three MPSAs were designed and fabricated on a 0.76 mm-thick RF-35 substrate to resonate at 2.5 GHz under unloaded conditions. Sensitivity comparison was performed by using five different standard dielectric samples with dielectric constants ranging from 2.17 to 10.2. The experiment results showed that the sensitivity of the proposed MPSA is 6.84 times higher for a low relative permittivity of 2.17, and 4.57 times higher for a high relative permittivity of 10.2, when compared with the conventional MPSA. In addition, the extracted relative permittivity values of the five materials under tests showed good agreement with the reference data.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献