Re-Epithelialization of Neuropathic Diabetic Foot Wounds with the Use of Cryopreserved Allografts of Human Epidermal Keratinocyte Cultures (Epifast)

Author:

Martinez-De Jesús Fermin R.ORCID,Frykberg RobertORCID,Zambrano-Loaiza Elízabeth,Jude Edward B.

Abstract

The application of tissue-engineering technology to wound healing has become an option for the treatment of diabetic foot ulcers (DFU). A comparative, prospective study was conducted to assess the efficacy of a cryopreserved allograft of human epidermal keratinocytes (Epifast) to enhance wound healing in granulating DFU. Eighty patients were assigned to receive Epifast (n = 40) or Standard Care (SC) treatment (n = 40). The Epifast group displayed a shorter duration of the epithelialization phase (3.5 ± 4 vs. 6.4 ± 3.6 weeks, p < 0.05) and upon the entire wound healing process than the SC group (10 ± 5.7 vs. 14.5 ± 8.9 weeks, p < 0.05), reaching wound closure at 16 and 30 weeks, respectively. The Kaplan–Meier analysis revealed that Epifast group patients were 50% more likely than the SC to heal wounds faster (Cox-hazards ratio of 0.5, 95% CI = 0.3–0.8, p < 0.0001; Likelihood Ratio of 7.8. p < 0.05). Patients in the control group displayed a slower healing as the Saint Elian (SEWSS) severity grade increased (group differences of 0.6, 3.8, and 4.3 weeks for grades I, II, and III, respectively). DFW treated with Epifast displayed a shorter time to complete re-epithelialization than wounds treated with standard care.

Publisher

MDPI AG

Subject

General Medicine

Reference19 articles.

1. Using living skin equivalents for diabetic foot ulceration;Pham;Int. J. Low. Extrem. Wounds,2002

2. Acellular fetal bovine dermal matrix in the treatment of nonhealing wounds in patients with complex comorbidities;Lullove;J. Am. Podiatr. Med. Assoc.,2012

3. and Hashimoto, K. Living skin equivalents construscted using human amnions as a matrix;Yang;J. Dermatol. Sci.,2009

4. The role of collagen bioscaffolds, foamed collagen, and living skin equivalents in wound healing;Landsman;Clin. Podiatr. Med. Surg.,2009

5. In vitro co-culture of human skin keratinocytes and fibroblasts on a biocompatible and biodegradable scaffold;Pajoum;Iran. Biomed. J.,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3