An Augmented Modulated Deep Learning Based Intelligent Predictive Model for Brain Tumor Detection Using GAN Ensemble

Author:

Sahoo Saswati1,Mishra Sushruta1ORCID,Panda Baidyanath2,Bhoi Akash Kumar345ORCID,Barsocchi Paolo5ORCID

Affiliation:

1. School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar 751024, India

2. LTIMindtree, 1 American Row, 3rd Floor, Hartford, CT 06103, USA

3. Directorate of Research, Sikkim Manipal University, Gangtok 737102, India

4. KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, India

5. Institute of Information Science and Technologies, National Research Council, 56124 Pisa, Italy

Abstract

Brain tumor detection in the initial stage is becoming an intricate task for clinicians worldwide. The diagnosis of brain tumor patients is rigorous in the later stages, which is a serious concern. Although there are related pragmatic clinical tools and multiple models based on machine learning (ML) for the effective diagnosis of patients, these models still provide less accuracy and take immense time for patient screening during the diagnosis process. Hence, there is still a need to develop a more precise model for more accurate screening of patients to detect brain tumors in the beginning stages and aid clinicians in diagnosis, making the brain tumor assessment more reliable. In this research, a performance analysis of the impact of different generative adversarial networks (GAN) on the early detection of brain tumors is presented. Based on it, a novel hybrid enhanced predictive convolution neural network (CNN) model using a hybrid GAN ensemble is proposed. Brain tumor image data is augmented using a GAN ensemble, which is fed for classification using a hybrid modulated CNN technique. The outcome is generated through a soft voting approach where the final prediction is based on the GAN, which computes the highest value for different performance metrics. This analysis demonstrated that evaluation with a progressive-growing generative adversarial network (PGGAN) architecture produced the best result. In the analysis, PGGAN outperformed others, computing the accuracy, precision, recall, F1-score, and negative predictive value (NPV) to be 98.85, 98.45%, 97.2%, 98.11%, and 98.09%, respectively. Additionally, a very low latency of 3.4 s is determined with PGGAN. The PGGAN model enhanced the overall performance of the identification of brain cell tissues in real time. Therefore, it may be inferred to suggest that brain tumor detection in patients using PGGAN augmentation with the proposed modulated CNN technique generates the optimum performance using the soft voting approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing brain tumor detection in MRI images using YOLO-NeuroBoost model;Frontiers in Neurology;2024-08-22

2. SSO-CCNN: A Correlation-Based Optimized Deep CNN for Brain Tumor Classification Using Sampled PGGAN;International Journal of Computational Intelligence Systems;2024-07-09

3. 3D brain image based tumor classification using ensemble of reinforcement transfer-based belief neural networks;Multimedia Tools and Applications;2024-06-13

4. A Hybrid Learning-Architecture for Improved Brain Tumor Recognition;Algorithms;2024-05-21

5. Skin cancer classification using Progressive Growing of Generative Adversarial Network;2024 International Conference on Emerging Technologies in Computer Science for Interdisciplinary Applications (ICETCS);2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3