Influence of Flood Waves, Production Wells, and Precipitation on Shallow Groundwater Using a Linear Regression Model Approach Based on a Case Study of Mohács Island, Hungary

Author:

Hervai András,Farics Éva,Sisák István,Farkas GáborORCID,Kovács JánosORCID,Lóczy DénesORCID

Abstract

Studying the relationship between river water and shallow groundwater (SGW) during flood events is a research topic receiving increasing attention for many reasons. This phenomenon was studied with respect to Mohács Island of the Danube (Hungary) in an area protected by a levee. Floods only infiltrate into the island through the aquifer, where production wells for drinking water supply are located. Our objective was to reveal how the Danube and water abstraction from production wells control groundwater levels in the observation wells, and we also studied the effect of the precipitation events and the lag times of the influencing variables compared to the peak of groundwater waves in observation wells. The effects of these factors were summarized by a linear regression model (LM) with lag times. We developed an application because we had time-series for thirty groundwater wells and five major flood events of the Danube. Kriging was used to generate impact maps of the Danube and production wells. A propagation map of the Danube flood wave into the groundwater aquifer was also generated. We used geological information to explain the findings that the river flood waves propagate with the same wavelength and decreasing amplitude in the covered aquifer and with an elongated wavelength in uncovered conditions.

Funder

European Social Fund

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference40 articles.

1. The side-effect of river regulation—Loss of biodiversity;Sandu,2005

2. The impact of river regulation on the biodiversity intactness of floodplain wetlands

3. Vizes élőhelyek (Wetland habitats);Szilágyi,2007

4. Klímaváltozás—aridifikáció—változó tájak (Climate change—aridification—changing landscapes);Rakonczai,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3