Feasibility of Low Latency, Single-Sample Delay Resampling: A New Kriging Based Method

Author:

Jedermann Reiner1ORCID

Affiliation:

1. Institute for Microsensors, Actuators and Systems (IMSAS), University Bremen, Otto-Hahn Allee 1, 28359 Bremen, Germany

Abstract

Wireless sensor systems often fail to provide measurements with uniform time spacing. Measurements can be delayed or even miss completely. Resampling to uniform intervals is necessary to satisfy the requirements of subsequent signal processing. Common resampling algorithms, based on symmetric finite impulse response (FIR) filters, entail a group delay of 10 s of samples, which is not acceptable regarding the typical interval of wireless sensors of seconds or minutes. The purpose of this paper is to verify the feasibility of single-delay resampling, i.e., the algorithm resamples the data without waiting for future samples. A new method to parametrize Kriging interpolation is presented and compared with two variants of Lagrange interpolation in detailed simulations for the resulting prediction error. Kriging provided the most accurate resampling in the group-delay scenario. The single-delay scenario required almost double the OSR to achieve the same signal-to-noise ratio (SNR). An OSR between 1.8 and 3.1 was necessary for single-delay resampling, depending on the required SNR and signal distortions in terms of jitter, missing samples, and noise. Kriging was the least noise-sensitive method. Especially for signals with missing samples, Kriging provided the best accuracy. The simulations showed that single-delay resampling is feasible, but at the expense of higher OSR and limited SNR.

Funder

German Research Foundation

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3