Abstract
A novel whitening technique for motor imagery (MI) classification is proposed to reduce the accuracy variance of brain–computer interfaces (BCIs). This method is intended to improve the electroencephalogram eigenface analysis performance for the MI classification of BCIs. In BCI classification, the variance of the accuracy among subjects is sensitive to the accuracy itself for superior classification results. Hence, with the help of Gram–Schmidt orthogonalization, we propose a BCI channel whitening (BCICW) scheme to minimize the variance among subjects. The newly proposed BCICW method improved the variance of the MI classification in real data. To validate and verify the proposed scheme, we performed an experiment on the BCI competition 3 dataset IIIa (D3D3a) and the BCI competition 4 dataset IIa (D4D2a) using the MATLAB simulation tool. The variance data when using the proposed BCICW method based on Gram–Schmidt orthogonalization was much lower (11.21) than that when using the EFA method (58.33) for D3D3a and decreased from (17.48) to (9.38) for D4D2a. Therefore, the proposed method could be effective for MI classification of BCI applications.
Funder
National Research Foundation of Korea
Kumoh National Institute of Technology
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献