Cloning of the RNA m6A Methyltransferase 3 and Its Impact on the Proliferation and Differentiation of Quail Myoblasts

Author:

Liu Jing1,Zhang Wentao1,Luo Wei2,Liu Shuibing1,Jiang Hongxia1,Liu Sanfeng1,Xu Jiguo34,Chen Biao1ORCID

Affiliation:

1. College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China

2. State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510000, China

3. Institute of Biological Technology, Nanchang Normal University, Nanchang 330032, China

4. Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang 330032, China

Abstract

Methyltransferase 3 (METTL3), which has been demonstrated to play a crucial role in a variety of biological processes, is the key enzyme for catalyzing m6A modification in RNA. However, the complete protein sequence of METTL3 in quail has not been annotated, and its function in skeletal muscle of quails remains unknown. In the current study, the full-length coding sequence of the quail METTL3 was obtained through the 3′ rapid amplification of cDNA ends (3’ RACE) and its homology with that of other species was predicted based on a generated phylogenetic tree. A Cell Counting Kit-8 assay and flow cytometry in a quail myoblast cell line (QM7) demonstrated that METTL3 promotes myoblast proliferation. The overexpression of METTL3 in QM7 cells significantly increased the expression levels of the myoblast differentiation markers myogenin (MYOG), myogenic differentiation 1 (MYOD1), and myocyte enhancer factor 2C (MEF2C), further demonstrating that METTL3 promotes myoblast differentiation. Additionally, transcriptome sequencing following METTL3 overexpression revealed that METTL3 controls the expression of various genes involved in RNA splicing and the regulation of gene expression, as well as pathways such as the MAPK signaling pathway. Taken together, our findings demonstrated that METTL3 plays a vital function in quail myoblast proliferation and differentiation and that the METTL3-mediated RNA m6A modification represents an important epigenetic regulatory mechanism in poultry skeletal muscle development.

Funder

Department of Agriculture and Rural Affairs of Jiangxi Province

Publisher

MDPI AG

Subject

General Veterinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3